Facebook Twitter Instagram
    ScienceMotive
    • Class 9
      • Matter in Our Surroundings
      • Is Matter Around Us Pure
      • Atoms and Molecules
      • Structure of the Atom
      • The Fundamental Unit of Life
    • Class 10
      • Chapter 1: Chemical Reactions and Equations
      • Chapter 2: Acids, Bases & Salts
      • Chapter 3: Metals & Non-Metals
      • Chapter 4: Carbon and its Compounds
      • Chapter 5: Periodic Classification of Elements
      • Chapter 6: Life Processes
      • Chapter 7: Control and Coordination
      • Chapter 8: How Do Organisms Reproduce?
      • Chapter 9: Heredity and Evolution
      • Chapter 10: Light – Reflection and Refraction
      • Chapter 11: Human Eye and the Colourful World
      • Chapter 12: Electricity
      • Chapter 13: Magnetic Effects of Electric Current
      • Chapter 14: Sources of Energy
      • Chapter 15: Our Environment
      • Chapter 16: Management of Natural Resources
    • Class 11
      • Chemisrty 11
        • Chapter – 1 Some Basic Concepts of Chemistry
        • Chapter – 2 Structure Of Atom
        • Chapter – 3 Classification of Elements and Periodicity in Properties
        • Chapter – 4 Chemical Bonding and Molecular Structure
        • Chapter – 5 States of Matter
        • Chapter – 6 Thermodynamics
        • Chapter – 7 Equilibrium
        • Chapter – 8 Redox Reaction
        • Chapter – 10 s-Block Elements
        • Chapter – 13 Hydrocarbons
    • Class 12
      • Chemistry 12
        • The Solid State
        • Solutions
        • Electrochemistry
        • Chemical Kinetics
        • Surface Chemistry
        • p – Block Elements
        • d & f Block Elements
        • Coordination Compounds
        • Haloalkanes and Haloarenes
        • Alcohols, Phenols and Ethers
        • Aldehydes, Ketones and Carboxylic Acids
        • Amines
        • Biomolecules
        • Polymers
        • Chemistry in Everyday Life
    • Practice Questions
      • +1
      • +2
    • Test Series
      • Class 9 Test Series
      • Class 10 Test Series
      • Class 11 Test Series
      • Class 12 Test Series
    • World
      • Current Affairs
      • General Knowledge
    ScienceMotive
    Home » Quantum Mechanics and Quantum Numbers

    Quantum Mechanics and Quantum Numbers

    Dr. Vikas JasrotiaBy Dr. Vikas JasrotiaOctober 28, 2020No Comments
    Share
    Facebook WhatsApp Telegram Twitter Email

    Quantum Mechanics and Quantum Numbers

    Quantum Mechanics and Quantum Numbers post provides complete information about quantum numbers with examples and wave function

    Quantum Mechanics: Quantum mechanics takes into account the dual behavior of matter. An equation, given by Schrodinger, which has a better physical interpretation in terms of wave properties is Ĥ ψ = Eψ. Where Ĥ is called Hamiltonian operator, E is the total energy of the system (K.E + P.E) and ψ is called the wave function.

    Physical Significance of ψ: The wave function (ψ) is a mathematical function and it has no physical significance. Wave functions of hydrogen or hydrogen-like species with one electron are called atomic orbitals. All the information about the electron in an atom is stored in its orbital wave function ψ.Its square ψ2 is proportional to the probability of finding the electron at a given point around the nucleus and is always positive.

    Quantum numbers: There are a set of four quantum numbers that specify the energy, size, shape, and orientation of an orbital. The Quantum number gives the address of the electron.                                                                                                                                                        These are:
    (i) Principal quantum number (n)
    (ii) Azimuthal quantum number (l)
    (iii) Magnetic quantum number (m)
    (iv) Electron spin quantum number (ms)

    Principal Quantum Number: The following formations are obtained from n.
    1. It gives the size of the orbit.
    2. It gives the energy of an electron in an orbit.
    3. It gives the shell in which the electron is found.
    4. It also gives the average distance between the electron and the nucleus. As the value of n increases, the distance between the electron and the nucleus also increases.

    n 1 2 3 4
    Shell no. K L M N
    Total number of orbitals in a shell = n2 1 4 9 16
    Maximum number of electrons = 2n2 2 8 18 32

     

    Azimuthal quantum number (l): Azimuthal quantum number. ‘l’ is also known as orbital angular momentum or subsidiary quantum number. It identified the subshell and the three-dimensional shape of the orbital. It also determines the number of subshells or sub levels in a shell. The total number of subshells in a particular shell is equal to the value of n. l = 0, 1, 2… (n-1)
    For example, when n = 1, the value of Ɩ is only 0.
    For n = 2, the possible value of Ɩ can be 0 and 1.
    For n = 3, the possible Ɩ values are 0,1 and 2.
    Ɩ= 0 represents s orbital, Ɩ = 1 represents p orbital, Ɩ = 2 represents d orbital and Ɩ = 3 represents f orbital. The number of sub-shells in a principal shell is equal to the value of n.
    When n = 1, Ɩ= 0. i.e. K shell contains only one sub-shell – s subshell
    when n = 2, Ɩ = 0 and1. i.e. L shell contains two subshells – s and p subshells
    when n = 3, Ɩ = 0, 1 and 2. i.e. M shell contains three subshells – s, p and d subshells.

     

    Magnetic Quantum Number (m): It gives information about the orientation of orbitals in space. For a given ‘Ɩ’ value, there are 2Ɩ+1 possible values for m and these values are given by: m = – Ɩ to 0 to + lThus for Ɩ = 0, m = 0 {2(0)+1 = 1}. i.e. s sub shell contains only one orbital called s orbital.
    For Ɩ = 1, mƖ = –1, 0 and +1, {2(1)+1 = 3}. i.e. p subshell contains three orbitals called p orbitals (px, py and pz).
    For Ɩ = 2, m = –2, –1, 0, +1 and +2, {2(2)+1 = 5}. i.e. d subshell contains five orbitals called d orbitals (dxy, dyz, dzx, dx2-y2, dz2).

     

    Spin Quantum Number (s or ms): It refers to the orientation of the spin of the electron. It can have two values +1/2 and -1/2. +1/2 identifies the clockwise spin and -1/2 identifies the anti-clockwise spin.

     

    Summary of Quantum Numbers

     

    Concept of Orbit and Orbital

        

    Advertisement
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Dr. Vikas Jasrotia
    • Website

    Related Posts

    How to Find the Neutrons

    February 2, 2023

    Value-Based Questions Class 11 Chemistry Chapter 7

    February 1, 2023

    Sample Paper Class 11 Chemistry

    January 31, 2023

    Leave A Reply Cancel Reply

    READ ALSO

    Periodic Classification of Elements Questions PDF (Answers)

    March 1, 2023

    Periodic Classification of Elements Questions

    February 28, 2023

    Carbon and Its Compounds Class 10 Solutions of Practice Questions

    February 22, 2023

    Carbon and Its Compounds Class 10 Practice Questions

    February 21, 2023
    Class 10 Test Series

    Periodic Classification of Elements Questions PDF (Answers)

    By Dr. Vikas JasrotiaMarch 1, 2023

    Periodic Classification of Elements Questions PDF (Answers) Periodic Classification of Elements Questions PDF Ans 1.…

    Class 10 Test Series

    Periodic Classification of Elements Questions

    By Dr. Vikas JasrotiaFebruary 28, 2023

    Periodic Classification of Elements Questions Periodic Classification of Elements Questions Que 1. What is the…

    Class 10 Test Series

    Carbon and Its Compounds Class 10 Solutions of Practice Questions

    By Dr. Vikas JasrotiaFebruary 22, 2023

    Carbon and Its Compounds Class 10 Solutions of Practice Questions Carbon and Its Compounds Class…

    Advertisement
    Advertisement
    Facebook Twitter Instagram Pinterest YouTube
    • Disclaimer
    • Contact Us
    • Privacy Policy 
    • Terms and Conditions
    © 2023 All Rights Reserved ScienceMotive.

    Type above and press Enter to search. Press Esc to cancel.